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T -function=triangle Boolean mapping=determined function:

(α↓0, α
↓
1, α
↓
2, . . .) 7→ (Φ0(α↓0),Φ1(α↓0, α

↓
1),Φ2(α↓0, α

↓
1, α
↓
2), . . .),

where αi ∈ Bm, Boolean columnar m-dimensional vector;

Φi : (Bm)(i+1) → Bn maps (i+ 1) Boolean columnar m-dimensional

vectors to n-dimensional Boolean vector; B = {0, 1}.
Example: A Stream cipher. αj , γj , ζj ∈ {0, 1}.
Plain text: α0 α1 α2 . . .

Addition mod2:
⊕

Key stream: γ0 γ1 γ2 . . .

Encrypted text: ζ0 = α0 ⊕ γ0 ζ1 = α1 ⊕ γ1 ζ2 = α2 ⊕ γ2 . . .
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Less trivial example: Plain-text-dependent cipher

Plain text: α0 α1 α2 . . .

Cipher γK0 γK1 (·) γK2 (·, ·) . . .

Encrypted text: α0 ⊕ γK0 α1 ⊕ γK1 (α0) α2 ⊕ γK2 (α0, α1) . . .

Yet another example: Integer addition

0 1 1 1

+

0 0 1 1

1 0 1 0
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Dynamical system: 〈X, µ, f〉, where X is a phase space (usually a

metric space), µ is a measure on X (e.g., probabilistic); f : X→ X is

a measurable mapping (usually, continuos). A trajectory:

x0,x1 = f(x0), . . . ,xi+1 = f(xi), . . . .

An example: Bernoulli shift (=doubling map) X = [0, 1] is the real

unit interval; µ is the Lebesgue measure; f(x) = 2 · x (mod 1) is

fractional part of 2 · x. This is a chaotic system!

Yet another example: Logistic map f(x) = 4 · x · (1− x) (mod 1)

What in common?
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Stream cipher. αj , γj , ζj ∈ {0, 1}.
Plain text: α0 α1 α2 . . .

Addition mod2:
⊕

Key stream: γ0 γ1 γ2 . . .

Encrypted text: ζ0 = α0 ⊕ γ0 ζ1 = α1 ⊕ γ1 ζ2 = α2 ⊕ γ2 . . .

Shannon’s Theorem ⇒ the cipher is secure whenever one chooses

key stream at random; i.e., the key stream must be a sequence of

i.i.d. random variables valuated in {0, 1}.
Given a family T of statistical tests, a pseudorandom sequence

(with respect to T ) is the one that passes all the tests of T .

Assuming an adversary can use only the tests of T , he can not

distinguish a pseudorandom sequence from a truly random one.
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Pseudorandom number generator (PRNG): A finite

automaton with internal alphabet A and output alphabet B. Here

f : A→ A is the state update function, G : A→ B is the output

function; usually a key is the initial state (a seed) x0. A key is the

only information that is not known to an adversary.

xi

f

G

xi+1 = f(xi)

state update

yi = G(xi)output
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A secure PRNG must meet the following conditions:

• For (almost) all keys the output sequences must be

pseudorandom (i.e., undistinguishable from a truly random)

• Given a segment yj , yj+1, . . . , yj+s−1 of the output, finding the

corresponding key x0 must be infeasible.

Note. Usually length s of the output is assumed to be restricted by

a polynomial in log |N |.
Example. BBS generator: f(x) = x2 mod M , M = P ·Q, the

primes P,Q are not known to an adversary, G(x) = δ0(x) (the least

significant bit of x). Conjecturing no algorithm could factorize M

in polynomial in logM time, the generator is secure; no output of

polynomial in logM length could be distinguished from random in

polynomial in logM time.

Note: The conjecture does not hold for quantum algorithms.

Drawback: BBS generator is too slow for practical purposes.
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In quest for a fast secure PRNG. Dynamical systems theory

prompts a very natural approach: Let 〈X, µ, f〉 be a dynamical

system with discrete time. Take a point x0 ∈ X as a key, use as a

source of pseudorandomness the trajectory

x0,x1 = f(x0), . . . ,xi+1 = f(xi), . . . . Questions:

1. How to implement this on a digital computer?

2. What will be the performance?

3. How pseudorandom is the so produced sequence?

4. Is the corresponding generator secure?

Chaos-based cryptography is based on a very natural mood — take

a chaotic map f and discretize it! Note: the result of an ad hoc

approach could be quite unexpected.

Example. A discretized version of the doubling map (Bernoulli

shift) f(x) = (2 · x) mod 1 is xi+1 ≡ 2 · xi (mod 2n). Becomes 0

after at most n iterations!!!
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“Despite a huge number of papers published in the field of

chaos-based cryptography, the impact that this research has made

on conventional cryptography is rather marginal. This is due to

two reasons:

• First, almost all chaos-based cryptographic algorithms use

dynamical systems defined on the set of real numbers, and

therefore are difficult for practical realization and circuit

implementation.

• Second, security and performance of almost all proposed

chaos-based methods are not analyzed in terms of the

techniques developed in cryptography. Moreover, most of the

proposed methods generate cryptographically weak and slow

algorithms.”∗

∗L. Kocarev. ’Chaos-Based Cryptography: A Brief Overview’, in: Circuits

and Systems IEEE Magazine. Vol.1, No. 3, 2001
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Aiming at practical realization. Both f and G must be

compositions of basic microprocessor instructions (operations),

which include:

• integer arithmetic operations (addition, multiplication,...)

• bitwise logical operations (OR, XOR, AND, NOT)

• machine operations (shifts, masking, cyclic shifts).

Note. Let z = δ0(z) + δ1(z) · 2 + δ2(z) · 22 + δ3(z) · 23 + · · · be a

base-2 expansion for z ∈ N0. Then

• δj(y XOR z) ≡ δj(y) + δj(z) (mod 2), bitwise addition modulo 2

• y AND z is a bitwise multiplication modulo 2

• b z2c is a shift towards less significant bits

• 2 · z is a shift towards more significant bits

• y AND z is masking of z with the mask y; in particular,

reduction modulo 2k is just z (mod 2k) = z AND(2k − 1)
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Observation 1. All these operations, with the only exception of

cyclic shifts, are defined on the space Z2 of all 2-adic integers.

The space Z2 could be thought of as a set of all countable infinite

binary sequences.

Addition:

. . . 1 1 1 1

+

. . . 0 0 0 1

. . . 0 0 0 0

Hence: . . . 11111 = −1.
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Multiplication:

. . . 0 1 0 1 0 1

×
. . . 0 0 0 0 1 1

. . . 0 1 0 1 0 1

+

. . . 1 0 1 0 1

. . . 1 1 1 1 1 1

Hence, . . . 1010101 = − 1
3 .
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Sequences with only finite number of 1’s correspond to non-negative

rational integers in their base-2 expansions, sequences with only

finite number of 0’s correspond to negative rational integers, while

eventually periodic sequences correspond to rational numbers

represented by irreducible fractions with odd denominators:

. . . 00011 = 3,

. . . 111111 = −1,

. . . 111100 = −4,

. . . 1010101 = − 1
3

Distance: d2(−1, 3) = ‖(−1)− 3‖2 = ‖ − 4‖2 = 1
22 = 1

4 .

That is: −1 ≡ 3 (mod 4); −1 6≡ 3 (mod 8).

Example:

1, 3, 7, 15, 31, . . . , 2n − 1, . . . −→
d2

−1,
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Observation 2. These operations (with the exception of cyclic

shifts) could be uniquelly expanded to continuous Z2-valued

functions of 2-adic integer arguments.

Observation 3. All these functions (with the exception of those

defined by shifts towards less significant bits) are T -functions.

Example: 2 = 1 XOR 3 = 2 AND 7 = NOT 13 (mod 8),

Observation 4. All these functions (with the exception of those

defined by shifts towards less significant bits) satisfy Lipschitz

condition with coefficient 1 with respect to a 2-adic metric.

Note. “F (a) ≡ F (b) (mod 2k) whenever a ≡ b (mod 2k)” ⇔
“‖F (a)− F (b)‖2 ≤ ‖a− b‖2”. By this reason, we call F compatible.

• A computer works with approximations of 2-adic integers up to

a certain precision with respect to a 2-adic metric.

• One may use also subtraction, division raising to a power:

3−1 ≡ 11 ≡ −5 (mod 16), 3−
1
3 ≡ 311 ≡ 3−5 ≡ 11 (mod 16)

Institute for Information Sciences and Security Technologies. RSUH. 2005



Vladimir Anashin p-Adic Dynamical Systems and Cryptography 15

From a computer’s view, the following function is well defined:

g(x) =

(
1− 2 · x ANDx2 + x3

ORx4

3− 4 · (5 + 6x5)x6 XOR x7

)7− 8x8

9+10x9

A computer evaluates this function correctly within any possible

2-adic precision he can achieve.

Natural metric of computer’s world is 2-adic, non-Archimedean!

Satisfying cryptographic demands. A discretization of a

dynamical system is defined on finite set N ; whence, all orbits are

(eventually) periodic. For many chaos-based cryptosystems a point

too often falls into unexpectedly short periods, thus making a

cipher insecure. A period must be long! Let make it the longest, |N |
Definition 1. A compatible mapping F : Zp → Zp is called

transitive modulo pk iff the induced mapping x 7→ F (x) (mod pk) is

a single cycle permutation on Z/pk.
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Note. From this very moment we are mainly focused on the case

|N | = 2k. However, further results could be expanded to the case of

a state set of arbitrary order; in particular for a p-adic case, p odd.

Theorem 1. A compatible mapping F : Zp → Zp is transitive

modulo pk for all k = 1, 2, 3, . . . iff it is ergodic with respect to the

Haar measure µ on Zp (we normalize µ so that µ(Zp) = 1).

How to determine ergodic functions among all compatible ones?

Any function F : Zp → Zp could be represented by Mahler’s

interpolation series: F (x) =
∑∞
j=0 cj

(
x
j

)
for suitable cj ∈ Zp. Recall

(
x

i

)
=


x(x− 1) · · · (x− i+ 1)

i!
, for i = 1, 2, . . .;

1, for i = 0.

An attempt to find an answer in terms of Mahler’s interpolation

series looks quite natural!
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Theorem 2. For p = 2 the function F : Zp → Zp is compatible and

ergodic ⇔

F (x) = 1 + x+

∞∑
i=1

ci · pblogp(i+1)c+1

(
x

i

)
,

for suitable ci ∈ Zp. (Note: For p 6= 2 one has ⇐, and not ⇔ ).

This theorem works well for ‘analytic-looking’ functions and those

which could be (explicitely) expressed as Mahler’s series:

Examples. For p = 2 the following is true:

1. The function F (x) = a · x+ ax is ergodic ⇔ a is odd

2. The function F (x) = − 1
2x+1 − x is ergodic

3. (M.V. Larin) A polynomial with integer coefficients is ergodic

⇔ it is transitive modulo 8.

4. The function F (x) = a0 + b1 · (x XOR a1) + b2 · (x XOR a2) + · · · is

ergodic ⇔ it is transitive modulo 4.
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In fact, examples 1,2, and 3 belong to a special interesting class B
of functions. Let

x0 = 1, x1 = x, x2 = x(x− 1), . . . , xi = x(x− 1) · · · (x− i+ 1), . . . ,

be descending factorial powers. Let B be a class of all functions

F : Zp → Zp that could be represented as F (x) =
∑∞
i=0 ci · xi for

suitable c0, c1, · · · ∈ Zp. The class of all functions Zp → Zp is

endowed with a natural (non-Archimedean) metric

D(U, V ) = max{‖U(z)− V (z)‖p : z ∈ Zp}
Theorem 3. B is a ring, and a separable and complete (with

respect to D) metric space of functions that are compatible and

uniformly differentiable everywhere on Z2. The class B is closed

with respect to compositions and with respect to derivations. The

set P of all polynomials over Z is a dence subset of B. All analytic

on Zp functions are a proper subclass of B. A function F ∈ B is

ergodic iff F is transitive modulo p2 (p > 3), or modulo p3 (p ≤ 3)
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The nature of example 4 differs from the one of examples 1,2, and

3. To understand this nature we need some notion. For

a = (a1, . . . , an),b = (b1, . . . , bn) ∈ Qnp we write a ≡ b (mod ps) iff

‖ai − bi‖p ≤ p−s and define ‖a‖p = max{‖ai‖p : i = 0, 1, 2, . . .}.
Definition 2. F = (f1, . . . , fm) : Znp → Zmp is differentiable modulo

pk at the point u = (u1, . . . , un) ∈ Znp iff ∃N ∈ N and an n×m
matrix F ′k(u) over Qp (the Jacobi matrix modulo pk) such that

∀K ≥ N and ∀h = (h1, . . . , hn) ∈ Znp , ‖h‖p = p−K holds

F (u + h) ≡ F (u) + h · F ′k(u) (mod pk+K). (1)

Uniform differentiability modulo pk on Znp : Nk(F ) = minK such

that (1) holds simultaneously for all u,h ∈ Znp , ‖h‖p ≤ p−K .

Compare: F is differentiable ⇔
F (u + h) ≡ F (u) + h · F ′k(u) (mod pΨ(K)),

where Ψ(K) tends to ∞ faster than K.
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Univariate case:
F (u + h)− F (u)

h
≈ F ′k(u)

≈ with arbitrarily high precision⇒ differentiability

≈ with precision not worse than p−k ⇒ differentiability mod pk

Rules of derivation modulo pk: replace ”=” with ”≡” in formulae.

Examples. • F (x, y) = x XOR y is not uniformly differentiable on

Z2
2; yet it is uniformly differentiable modulo 2,

F ′1(x, y) ≡
1

1

 (mod 2), i.e., d1F (x, y) ≡ d1x+ d1y (mod 2)

• F (x) = x mod pn is uniformly differentiable on Zp, F ′(x) = 0.

• F (x, y) = x OR y is differentiable modulo 2 at no point of Z(2)
2 ;

it is uniformly differentiable with respect to x for each y ∈ Z;

its derivative is 1 for y ≥ 0, and it is 0 in the opposite case.
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Theorem 4. Let a compatible function F : Zp → Zp be uniformly

differentiable modulo p2. Then F is ergodic if and only if it is

transitive modulo pN2(F )+1 for odd prime p or, respectively, modulo

2N2(F )+2 for p = 2. (Recall Definition 2.)

Example. (Klimov-Shamir ∗) The function x+ (x2
OR 5) is ergodic.

Proof. The function F (x) = x+ (x2
OR 5) is uniformly differentiable

on Z2; thus, it is uniformly differentiable modulo 4:

F ′(x) = 1 + 2x · (x OR 5)′ = 1 + 2x, and N2(f) = 3. Now to prove

that f is ergodic, in view of Theorem 4 it sufficies to demonstrate

that f induces a permutation with a single cycle on Z/32. One

verifies this by direct calculations.

∗‘A new class of invertible mappings’, in: Cryptographic Hardware and Em-

bedded Systems 2002 (B.S.Kaliski Jr.et al., eds.)), Lect. Notes in Comp. Sci.,Vol.

2523, Springer-Verlag, 2003, pp.470–483
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Theorem 5. A polynomial F (x) ∈ Qp[x] is integer-valued (i.e.,

F (Zp) ⊂ Zp), compatible and ergodic iff the mapping

z 7→ F (z) mod pblogp(degF )c+3,

with z ranging over {0, 1, . . . , pblogp(degF )c+3 − 1}, defines a

compatible and transitive function on the residue class ring

Z/pblogp(degF )c+3. Loosely speaking, to determine whether a

polynomial F (x) with rational (and not necessarily integer)

coefficients is ergodic, one has to make ≈ p3 · degF evaluations.

Theorem 6. Denote ∆U(x) = U(x+ 1)− U(x). For p = 2 the

function F : Zp → Zp is compatible and ergodic ⇔
F (x) = 1 + x+ p ·∆U(x) for a compatible function U : Zp → Zp.

For p 6= 2 only ⇐ is true.

Theorem 7. Let the function F = (f1, . . . , fn) : Znp → Znp be

compatible, ergodic, and uniformly differentiable modulo p on Zp.

Then n = 1. (Non-differentiable modp ones do exist for n > 1)
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What output functions do we need, if any? Our PRNG generates a

sequence {yi} according to the recurrence law xi+1 = f(xi) ≡ F (xi) (mod 2n);

yi = G(xi),

where F is compatible and ergodic on Z2. Thus, the sequence

{xi ∈ Z/2n} is strictly uniformly distributed; i.e., it is periodic; the

length of its period is the longest possible, 2n; each element of Z/2n

occurs at the period exactly once. However, given z ∈ Z/2n, it is

NOT computationally difficult to find a unique x ∈ Z/2n to satisfy

z = F (x) (mod 2n). Hence, in case G is, say, the identity map, the

system is insecure! Thus, G must simultaneously:

1) make it secure: given an output yi, make it computationally

difficult to find xi that satisfy yi = G(xi), and

2) not spoil: the sequence {yi} must be uniformly distributed
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Let G : Z/2n → Z/2m (m ≤ n), and let |G−1(z)| does not depend

on z ∈ Z/2m (i.e., let |G−1(z)| = 2n−m for each z ∈ Z/2n). In

cryptography these G are called balanced. In case n−m is big, G

(seemingly) satisfies both 1) and 2).

Note: In case n := n · k and m := m · k one defines a mapping

G : (Z/2k)n → (Z/2k)m to be balanced modulo 2k by analogy.

Theorem 8. Let G : Znp → Zmp be a compatible mapping. The

function G is balanced modulo pk for all k = 1, 2, . . . iff G preserves

measure (i.e., µ(G−1(U)) = µ(U) for every measurable U ⊂ Zmp ).

Thus, we have to

describe measure-preserving functions among all compatible ones.

Theorem 9. Let a compatible function G : Znp → Zmp be uniformly

differentiable modulo p on Zp. Then G preserves measure if it is

balanced modulo pk for some k ≥ N1(G), and the rank of Jacobi

matrix G′1(u) modulo p is exactly m for all u ∈ (Z/pk)n.
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Examples. Consider a polynomial G(x1, . . . , xn) ∈ Zp[x1, . . . , xn]

• A polynomial G preserves measure if it is balanced modulo p

and all its partial derivatives vanishes simultaneously modulo p

at no point of (Z/p)n.

• In case p = 2 one may replace arbitrarily some +’s in G with

XOR’s and/or multiplications by coefficients with AND’s; the

assertion still remains true.

Note. In case m = n conditions of Theorem 9 are also necessary.

For m = n = 1 explicit descriptions could be obtained (similar to

those of ergodicity). They could be of use also to satisfy conditions

1) and 2) by making the output function G of our PRNG

key-dependent (thus making G not known to an adversary).

Theorem 10. (cf. Theorem 4) For m = n within conditions of

Theorem 9 a compatible function G preserves measure iff it is

balanced modulo pN1(G)+1.
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Theorem 11. For p = 2 the function G : Zp → Zp is compatible

and measure-preserving ⇔
• (cf. Theorem 2) G(x) = c0 + c′1 · x+

∑∞
i=1 ci · pblogp ic+1

(
x
i

)
, for

suitable ci ∈ Zp, ‖c′1‖p = 1.

• (cf. Theorem 6) G(x) = c+ c′ · x+ p · U(x) for a compatible

function U : Zp → Zp, c, c′ ∈ Zp, ‖c′‖p = 1.

For p 6= 2 only ⇐ is true.

Theorem 12. Let p be an arbitrary prime.

• (cf. Theorem 3) A function G ∈ B preserves measure iff G is

bijective modulo p2.

• (cf. Theorem 5) A polynomial G(x) ∈ Qp[x] is integer-valued,

compatible, and measure-preserving iff the mapping

z 7→ G(z) mod pblogp(degG)c+3

defines a compatible permutation on Z/pblogp(degG)c+3.
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Advantage: This approach leads to flexible PRNGs, where both the

state update and output functions are key-dependent. Moreover,

we can make both the state update and output functions to be

clock-dependent to construct a counter-dependent automaton.

xi

f

G

xi+1 = fi(xi)

state update

yi = Gi(xi)output

A counterpart in dynamics is a non-autonomous dynamical system.
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To construct these counter-dependent automatons we in fact make

use of a skew shift (z, x) 7→ (U(z), Vz(x)). To avoid somewhat

combersome statements, we restrict ourselves with practical

Examples. Let c0, . . . , cm−1 ∈ Z2, h0, . . . , hm−1 be compatible

mappings Z2 → Z2, 0 6 j 6 m− 1. The sequence {xi} is periodic

modulo 2k and strictly uniformly distributed modulo 2k ∗, and the

length of its shortest period is m · 2k, if

1) m = 2k,
∑m−1
j=0 cj ≡ 1 (mod 2), and fj(x) = cj + x+ 4 · hj(x);

2) m > 1 odd, all h0, . . . , hm−1 are ergodic, and

• ∑m−1
j=0 cj ≡ 0 (mod 2),

• the sequence {ci mod m mod 2: i = 0, 1, 2, . . .} is periodic; m

is the length of its shortest period,

and fj(x) = cj XORhj(x), or fj(x) = cj + hj(x).

∗i.e., each a ∈ Z/2k occurs at the period the same number of times

Institute for Information Sciences and Security Technologies. RSUH. 2005



Vladimir Anashin p-Adic Dynamical Systems and Cryptography 29

How random is the output? What tests will it provably pass?

Frequency tests are those that consider occurences of (overlapping)

`-tuples in a binary output. That is, one represents xi mod 2k as a

k-bit word xi mod 2k (base-2 expansion of xi mod 2k), considers a

concatenation

xi mod 2k xi+1 mod 2k xi+2 mod 2k . . .

and counts occurences of patterns 0, 1, 00, 01, 10, 11, 000, 001, . . .. It

turnes out that the period of the sequence {xi mod 2k} satisfies the

following condition ∣∣∣∣ν(β0 . . . β`−1)

T
− 1

2`

∣∣∣∣ ≤ 1√
T

for all 0 < ` ≤ log2 T , where ν(β0 . . . β`−1) is the number of

occurences of the pattern β0 . . . β`−1, and T is the length of the

period of the sequence {xi mod 2k}, i.e., T = mk · 2k in our case.
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Linearity tests are those that consider linear dependencies in the

output sequence. (To simplfy, return to autonomous systems.)

Definition 3. Let Z = {zi} be a sequence over a ring R. The

linear complexity λR(Z) of Z over R is the smallest r ∈ N0 such

that ∃c, c0, c1, . . . , cr−1 ∈ R (not all equal to 0) ∀i = 0, 1, 2, . . .

c+

r−1∑
j=0

cj · zi+j = 0. (2)

Geometrically: Let R = Z/pk; all points ( zi
pk
,
zi+1

pk
, . . . ,

zi+r−1

pk
),

i = 0, 1, 2, . . . fall into parallel hyperplanes.

Proposition 1. Let f(x) ∈ Qp[x] (of T. 5) and let deg f ≥ 2; then

limn→∞ λZ/pn({xi mod pn}) =∞ (tends not slower than log n)

Note: Let R = Z/2, let Z be a random sequence of length T . Then

the expectation of λZ/2(Z) is T
2 .

Proposition 2. λZ/2({xi mod 2n}) = 2n−1 + 1.
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Polynomial-time tests and ‘provable’ security. To prove a cipher is

secure one makes a ‘polynomial-time’ reduction to one of plausible

(but still unproven) conjectures of ‘intractability’ of a certain

problem, which is ‘hard in average’.

Consider a polynomial ψ(χ0, χ1, . . . , χn−1) over Z/2 in variables

χ0, χ1, . . . , χn−1; for m ∈ N replace χmj with χj . Thus one obtains

a Boolean polynomial, or an algebraic normal form of a Boolean

function. To determine whether k Boolean polynomials in n

variables have a common zero is an NP-complete problem. We

conjecture: For k ≤ n it is intractable to find a solution of a system

of random Boolean equations∗. Now we construct a compatible and

ergodic function out of given Boolean polynomials ψi: For x ∈ Z2

denote Ψi(x) = ψi(δ0(x), . . . , δn−1(x)) ∈ {0, 1} ⊂ Z2; let ⊕ = XOR;

f(x) = (1 + x)⊕ 2n+1 ·Ψ0(x)⊕ 2n+2 ·Ψ1(x)⊕ · · · ⊕ 2n+k ·Ψk−1(x)
∗under assumption that the number of monomials in each equation is poly-

nomially restricted
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To construct a PRNG we take f mod 2n+k+1 as a state update

function, G = b z
2n+1 c mod 2k (a truncation of n+ 1 low order bits)

as an output function, and x0 ∈ {0, 1, . . . , 2n − 1} as a key. The

produced output sequence attains all the above mentioned

properties (period of length 2n+k+1, uniform distribution, etc.)

However, it is not difficult to show that to find a state

x = χ0 + χ1 · 2 + · · ·χn−1 · 2n−1 given an output, an adversary

(with probability 1− 1
2n ) has to solve a Boolean system

ψi(χ0, χ1, . . . , χn−1) = εi (i = 1, 2, . . . , k),

where εi ∈ {0, 1} are determined by the output.

Moreover, it is possible to construct a counter-dependent

automaton (which produces an output sequence that attains all the

above mentioned properties) in such a way, that at each new step

an adversaray will have to solve a new Boolean system, i.e., the left

hand part of a system will change from step to step.
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Boolean representation and multivariate mappings. To achieve

better performance usually it is better to work with shorter words

organized into array of bigger dimension, than with longer words

and (say) 1-dimensional array. Thus we need to construct

multivariate ergodic (also, measure-preserving) mappings. We

construct them out of univariate ones. Represent a mapping

F : Z2 → Z2 as a correspondence between infinite binary strings

x =χ0 + χ1 · 2 + χ2 · 22 + · · · F7→ ψ0(x) + ψ1(x) · 2 + ψ2(x) · 22 + · · ·
(χ0, χ1, χ2, . . .)

F7→ (ψ0(x);ψ1(x);ψ2(x); . . .)

where each ψj(x) is a Boolean function of (infinite) number of

Boolean variables χ0, χ1, . . . . It is easy to see that F is compatible

⇔ each ψj does not depend on χj+1, χj+2, . . .. In other words, iff F

is a skew shift:

(χ0, χ1, χ2, . . .)
F7→ (ψ0(χ0);ψ1(χ0, χ1);ψ2(χ0, χ1, χ2); . . .).

Institute for Information Sciences and Security Technologies. RSUH. 2005



Vladimir Anashin p-Adic Dynamical Systems and Cryptography 34

Theorem 13. (A re-statement of a folklore result from the theory

of Boolean functions.) A mapping F : Z2 → Z2 is compatible and

measure preserving iff for each i = 0, 1, . . . the Boolean function

ψi = δi(F ) in Boolean variables χ0, . . . , χi could be represented as a

Boolean polynomial of the form

ψi(χ0, . . . , χi) = χi + ϕi(χ0, . . . , χi−1),

where ϕi is a Boolean polynomial. The mapping F is compatible

and ergodic iff, additionaly, the Boolean function ϕi is of odd

weight; that is, ϕi takes value 1 exactly at the odd number of points

(ε0, . . . , εi−1), where εj ∈ {0, 1} for j = 0, 1, . . . , i− 1. The latter

takes place if and only if ϕ0 = 1, and the degree of the Boolean

polynomial ϕi for i ≥ 1 is exactly i, that is, ϕi contains a monomial

χ0 · · ·χi−1.
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Now take ergodic

F : (χ0, χ1, χ2, . . .)
F7→ (ψ0(χ0);ψ1(χ0, χ1);ψ2(χ0, χ1, χ2); . . .),

arrange

χ0 χs χ2s . . .
f07→ ψ0(x) ψs(x) ψ2s(x) . . .

χ1 χs+1 χ2s+1 . . .
f17→ ψ1(x) ψs+1(x) ψ2s+1(x) . . .

. . . . . . . . . . . .

χs−1 χ2s−1 χ3s−1 . . .
fs−17→ ψs−1(x) ψ2s−1(x) ψ3s−1(x) . . .

Assuming left strings are variables x(0), x(1), . . . , x(s−1), we

conclude that the s-variate mapping

F = (f0, f1, . . . , fs−1) : Zs2 → Zs2,

which is conjugate to a univariate mapping F : Z2 → Z2, is

compatible and ergodic.
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Example: Let F (x) = 1 + x; then ψ0 = χ0 + 1, and

ψj = χj + χ0 · · ·χj−1 for j ≥ 1.

The corresponding s-variate mapping

F(x) = (f (0)(x), . . . , f (s−1)(x))

is of the following form:

f (k)(x) = x(k) ⊕
(( k−1∧

t=0

x(t)

)
∧
( s−1∧
r=0

((x(r) + 1)⊕ x(r))

))
=

x(k) ⊕
(( k−1∧

t=0

x(t)

)
∧
((( s−1∧

r=0

x(r)

)
+ 1

)
⊕
( s−1∧
r=0

x(r)

)))
,

where x = (x(0), . . . , x(s−1)) ∈ Zs2, k = 0, 1, 2, . . . , s− 1. (Here and

further ⊕ stands for XOR.)
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Proposition 3. Let t, j ∈ {0, 1, . . . , s− 1}, let all f
(j)
t : Z2 → Z2 be

ergodic and let all g
(j)
t : Z2 → Z2 preserve measure. Then the

mapping F(x) = (f (0)(x), . . . , f (s−1)(x)), where

f (0)(x) = x(0) �
( s−1∧
r=0

(f (0)
r (x(r))⊕ x(r))

)
;

f (1)(x) = x(1) �
(
g

(1)
0 (x(0)) ∧

( s−1∧
r=0

(f (1)
r (x(r))⊕ x(r))

))
;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f (s−1)(x) =

= x(s−1) �
(( s−2∧

t=0

g
(s−1)
t (x(t))

)
∧
( s−1∧
r=0

(f (s−1)
r (x(r))⊕ x(r))

))
,

x = (x(0), . . . , x(s−1)) ∈ Zs2, � ∈ {+,⊕}, is a compatible and ergodic

mapping of Zs2 onto Zs2.
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